

Meanings as proposals: An algebraic inquisitive semantics

Matthijs Westera (m.westera@uva.nl)

Institute for Logic, Language and Computation, University of Amsterdam

Goal and approach

We aim for a semantics that unlike classical and basic inquisitive semantics [4] distinguishes:

- $p \lor q$
- $p \lor q \lor (p \land q)$

Starting from a particular view on meaning, we derive such a semantics guided by general algebraic concerns.

Relevance

- Enables a Gricean explanation of why (1) but not (2) pragmatically implies $\neg (p \land q)$.
- Relates to algebraically similar formalisms, e.g., propositional dynamic logic.
- As in [2], the semantics can model epistemic modal 'might p' as $p \vee T$.

Main results

- A generalized version of unrestricted inquisitive semantics [2], though with new notions of entailment and implication.
- A deeper conceptual understanding of it, as a semantics of proposals.
- An algebraic characterisation as a dioid.

Meanings as proposals

For W a set of worlds, a meaning A is a set of update functions on epistemic states,

 $A \subseteq \rho W^{\rho W}$. We think of such sets as follows:

A represents a proposal to update the common ground with any $f \in A$.

We derive a semantics from this view.

An algebra of proposals

To let $(1) \not\equiv (2)$, either the laws of absorption must fail, or disjunction must lack idempotence. Without absorption, the algebraic structure would not be a lattice (cf. right column) but, at best, two semi-lattices. Hence, to be safe, we choose two conceptual footholds, one for each half. We motivate definitions for \oplus and \otimes by spelling out the 'proposal'-view:

- (3) 'Let's do an $\boldsymbol{f} \in \boldsymbol{A}$ or a $\boldsymbol{g} \in \boldsymbol{B}$ ' 'Let's do an $f \in A \cup B$ '
- (4) 'Let's do an $\mathbf{f} \in \mathbf{A}$ and a $\mathbf{g} \in \mathbf{B}$ ' 'Let's do a $\mathbf{f} \circ \mathbf{g}$, $\mathbf{f} \in \mathbf{A}$, $\mathbf{g} \in \mathbf{B}$ '

Here $\mathbf{f} \circ \mathbf{g}$ is function composition. Thus:

- $A \oplus B \coloneqq A \cup B$
- $A \otimes B \coloneqq \{f \circ g : f \in A, g \in B\}$

This gives us the following properties:

- $\langle \wp(\wp W^{\wp W}), \oplus, \varnothing \rangle$ is a join-semilattice
- $\langle \wp(\wp \mathsf{W}^{\wp \mathsf{W}}), \otimes, \{\lambda x.x \cap \mathsf{W}\} \rangle$ is a monoid
- No absorption ≤ good news!
 Observed B
 Was distributes over ⊕
- $A \oplus \emptyset = A, A \otimes \emptyset = \emptyset$

And hence:

• $\langle \wp(\wp\mathsf{W}^{\wp\mathsf{W}}), \oplus, \varnothing, \otimes, \{\lambda x.x \cap \mathsf{W}\} \rangle$ is a dioid, i.e., an idempotent semiring.

Each operation yields a natural order:

- $A \models B :\iff \exists C.B \otimes C = A$
- $A \propto B :\iff \exists C.B \oplus C = A$

For entailment, we have $A \otimes B \models A$, but not

 $A \models A \oplus B$, in accordance with:

- (5) 'Let's have tea and cake' implies 'Let's have tea'
- (6) 'Let's have tea' doesn't imply 'Let's have tea or cake'

The other order (∞) captures a basic notion of compliance (cf. [3]). We have $\mathbf{A} \oplus \mathbf{B} \propto \mathbf{A}$, but not $\mathbf{A} \propto \mathbf{A} \otimes \mathbf{B}$.

Static proposals

If a function is eliminative and distributive, i.e., it only provides information about the world, we call it (and proposals containing only such functions) 'static'. A static function \boldsymbol{f} can be represented by an object $f(W) \subseteq W$ [1], hence a static proposal A by an object $\widehat{A} \subseteq \wp W$:

 $\widehat{A} \coloneqq \{f(\mathsf{W}) : f \in A\}$ A static proposal \boldsymbol{A} yields the information $\bigcup \widehat{A}$ and the request $\widehat{A}\downarrow$ (cf. right column; ↓ is downward closure).

Proposal implication

Dioids lack a natural complement operation. We suggest that natural language implication (and negation) operates on requests, not on proposals. We define proposal implication \Rightarrow , in terms of the relative pseudo-complement ② of basic inquisitive semantics [4]:

 $A\Rightarrow B=\{\lambda x.x\cap\alpha:\alpha\in\mathsf{MAX}(\widehat{A}\downarrow\oslash\widehat{B}\downarrow)\}$ I.e., $\mathbf{A} \Rightarrow \mathbf{B}$ is the proposal to update in a way that resolves exactly the request $\widehat{A} \downarrow \oslash \widehat{B} \downarrow$.

Unrestricted inquisitive semantics

We define unrestricted inquisitive semantics for propositional logic, with $\neg \varphi := \varphi \rightarrow \bot$:

- $[p] = {\lambda x.x \cap {w : w(p) = 1}};$
- $[T] = \{ \lambda x.x \cap \alpha : \alpha \subseteq W \}, [\bot] = \{ \lambda x.x \cap \emptyset \}$

- $[\varphi \to \psi] = [\varphi] \Rightarrow [\psi]$

With the following conservativity results:

- For all φ , $\bigcup \widehat{[\varphi]} = [\varphi]_{\text{classical sem.}}$
- For all φ , $[\varphi]\downarrow = [\varphi]_{\text{basic-inquisitive-sem.}}$

Comparison: meanings as information

For **W** a set of worlds, $\boldsymbol{w_0}$ the actual world, we can think of a set $\mathbf{A} \subseteq \mathbf{W}$ as:

A natural entailment order on such objects is:

- $A \models B$ iff $A \subseteq B$
- (℘W,⊨) is a Boolean lattice, with join ⊕, meet ⊗, and complement ⊖ operations.

Associating these with the connectives of propositional logic gives us classical semantics.

Comparison: meanings as requests [4]

For **W** a set of worlds, $\boldsymbol{w}_{\boldsymbol{\theta}}$ the actual world, we can think of a downward-closed set $\mathbf{A} \subseteq \boldsymbol{\wp} \mathbf{W}$ as:

A natural entailment order on such objects is:

 $A \models B \text{ iff } \forall \alpha \in A. \exists \beta \in B. \alpha \subseteq \beta$

 $(\wp\wp W, \vDash)$ is a Heyting lattice, with join \oplus , meet \otimes , and relative pseudo-complement \oslash .

Associating these with the logical connectives gives us basic inquisitive semantics.

Acknowledgements

Thanks to the Netherlands Organization for Scientific Research (NWO) for financial support; to F. Roelofsen, J. Groenendijk, J. Marti, I. Ciardelli and an anonymous reviewer for valuable comments.